Новости электроэнергетики

К концу года мощность солнечной энергетики Китая достигнет 50 ГВт

24 / 10 / 2017

Китай намерен занять ведущие позиции в борьбе с изменением климата на Земле и перевести промышленность на «чистые» источники энергии.

Уже к концу текущего года на Китай будет приходиться половина совокупной мощности всех солнечных панелей мира, пишет Electrek. Китай лидирует в установке солнечных панелей, с огромным отрывом опережая весь мир. По состоянию на июнь-июль 2017 года их суммарная мощность составляла 25 ГВт, и по прогнозам ASECEA, к концу текущего года эта цифра достигнет 50 ГВт. При том, что мощность солнечных панелей во всем мире на сегодняшний день составляет 100 ГВт.

Долгое время Китай занимался только экспортом солнечных панелей, но после десяти лет серьезных инвестиций стал одним из самых крупных потребителей собственной продукции. Из производимых в год 80 ГВт солнечных панелей 50 ГВт остается в стране. Важно, что большое количество солнечных панелей установлено вне промышленного сектора. Это было сделано в рамках программы Top Runner, которую Китай специально организовал, чтобы солнечной энергией пользовались не только огромные предприятия, но и небольшие проекты.

В сентябре 2017 года общая мощность солнечных панелей в Китае составляла 42 ГВт. Для сравнения, в США эта цифра достигла всего 14,6 ГВт, и это с учетом того, что североамериканский рынок за год вырос на 100%. Председатель КНР Си Цзиньпин заявил в своей ежегодной речи (аналоге американского «Обращения о положении страны»), что Китай занял ведущие позиции в борьбе с изменением климата на Земле. «Мы стали той движущей силой, которая приведет все страны мира к экологической цивилизации. Поэтому мы должны придумать новую модель модернизации, которая позволит людям жить в гармонии с природой».

В подтверждение этих слов Китай уже рассматривает вопрос о запрете на производство и продажу автомобилей, использующих традиционные виды топлива. А также страна начнет производить 3 млн электромобилей в год к 2020 году и 7 млн единиц пять лет спустя.

 

В Республике Алтай введена в эксплуатацию солнечная электростанция на модулях нового поколения

17 / 10 / 2017

Компания «Хевел», совместное предприятие «Реновы» и «Роснано», ввела в эксплуатацию Майминскую СЭС мощностью 20 МВт в Республике Алтай, говорится в сообщении «Хевел».

В Майминском районе Республики Алтай введена в эксплуатацию первая солнечная электростанция,построенная на гетероструктурных модулях российского производства.  Солнечные батареи былиразработаны научно-техническим центром тонкопленочных технологий в «Сколково».В результате Россия вошла в перечень стран наряду с Японией и Кореей, использующих технологию гетероперехода в промышленных масштабах.

Одновременно с пуском Майминской СЭС введена в эксплуатацию Онгудайская СЭС мощностью 5 МВт. В результате завершения суммарная мощность объектов солнечной генерации Республики Алтай достигла 40 МВт.
«Уже в следующем году мы планируем расширить производство по гетероструктурной технологии до 220 МВт в год, а до конца этого года – начать реализацию ряда проектов за рубежом», – отметил генеральный директор «Хевел» Игорь Шахрай.

Внедренная на заводе «Хевел» в Новочебоксарске (Чувашия) гетероструктурная технология в мировой практике относится к новому поколению кремниевых солнечных элементов, отличающихся наиболее высоким КПД ячейки – более 22% и широким температурным диапазоном использования.

В предыдущие три года в Республике Алтай уже построены три солнечных станции общей мощностью 15 МВт: в 2014 году была введена в эксплуатацию первая в России солнечная электростанция – Кош-Агачская СЭС, в 2015 году – её вторая очередь, осенью 2016 года – Усть-Канская СЭС. Кроме того, с 2013 года в Республике Алтай работает первая в России автономная гибридная солнечно-дизельная энергоустановка мощностью 100 кВт, которая в круглосуточном режиме обеспечивает электроснабжение села Яйлю. «Хевел» ожидает, что к 2019 году общая установленная мощность солнечной генерации в Республике Алтай достигнет 90 МВт.

В Астраханской области ввели в эксплуатацию первую солнечную электростанцию

12 / 09 / 2017

7 сентября 2017 года в Астраханской области состоялся официальный запуск солнечной электростанции (СЭС) «Заводская». Это первый проект, реализованный новым игроком на российском рынке солнечной энергетики,  — компанией ООО «Солар Системс» (дочерним предприятием  китайской Amur Sirius Power Equipment Co.). Проект вошел в число победителей второго конкурсного отбора инвестиционных проектов по строительству генерирующих объектов, функционирующих на основе использования возобновляемых источников энергии, на 2014–2017 год.

СЭС «Заводская» мощностью 15 МВт стала первой крупной солнечной электростанцией в Астраханской области и соответствует установленным требованиям по локализации. На электростанции установлено более 56 тыс. мультикремниевых фотоэлектрических модулей мощностью по 250 Вт, установленных на специальные металлические сваи с цинковым покрытием, изготовленных из высокочистого кремния, произведенного на заводе в Московской области. Электротехническое оборудование и опорные конструкции также являются продукцией российских поставщиков.

СЭС будет вырабатывать в год 21 млн кВтч, что эквивалентно годовому потреблению электроэнергии 20 тыс. жителей региона.

Всего до 2020 года ООО «Солар Системс» планирует построить и ввести в эксплуатацию в России 15 СЭС суммарной мощностью 335 МВт. В дальнейшем планируется выход на рынки стран СНГ и дальнего зарубежья. Всё это в совокупности с перспективами дальнейшего расширения компанией производства в России будет способствовать достижению стоящих перед страной задач по развитию высокотехнологичных секторов промышленности.

Астраханская область считается самым солнечным регионом на юге России, в год здесь насчитывается более 300 солнечных дней.

 

В Нидерландах построят район на солнечной энергии

29 / 08 / 2017

В Нидерландах, в городе Эйндховен, будет  построен экологически чистый и энергетически самодостаточный микрорайон. Ресурс Inhabitat сообщает, что генерировать электричество для поддержания жизнеспособности объектов будут инновационные технологии на базе солнечной энергетики.

Nieuw Bergen – так будет назван проект, в рамках которого будут построены 240 новых домов – жилых и административных. На 1700 квадратных метрах расположатся коммерческие площади, а  на 270 квадратных метрах — коммуникации и подземная парковка.

В концепции «зеленого района» основную роль выделяют максимальному использованию естественного освещения.  Для выработки энергии одно из ключевых мест займет именно “солнечная” концепция — предполагается, что будущие постройки будут использовать энергию солнца максимально для нужд района.  Комфортную атмосферу и уют  для жителей и гостей района обеспечат парки, которые планируются разбить на крышах домов.

Как утверждают разработчики проекта, каждое здание будет уникально, но в совокупности же все они создадут единый комплекс, который будет призван гармонично разнообразить городскую среду города.

АО «НПП «Звезда» представило на МАКС-2017 макет кабины самолета на солнечных батареях

22 / 08 / 2017

АО «НПП «Звезда» представило на МАКСе-2017 макет кабины самолета на солнечных батареях «Solar Stratos» с системой жизнеобеспечения (СОЖ) для пилота самолета.

СОЖ предназначена для обеспечения жизнедеятельности пилота в экстремальных условиях на высотах до 25 км и температурах окружающей среды до минус 50 градусов в негерметичной кабине.

В состав СОЖ входят: блок вентиляции, модернизированный скафандр «Сокол КВ-2», теплозащитный костюм, пульт управления СОЖ и системами обогрева.

SolarStratos, солнечный самолет, предназначенный для достижения стратосферы, совершил первый тестовый полет в мае этого года.

Пилот Дамиан Хиршер находился в воздухе семь минут, поднявшись на 300 метров. Полет прошел без осложнений.

Предполагается, что SolarStratos сможет достигать высоты 25 тысяч метров, невозможной для аппаратов с традиционными силовыми установками. Самолет должен достичь стратосферы уже в следующем году. Из-за того, что построить герметичную кабину для самолета невозможно, пилоту нужно будет надевать скафандр.

Самолет SolarStratos имеет размах крыльев 72 метра и весит около 2,3 тонн. Размеры самолета сравнимы с самым большим пассажирским перевозчиком Airbus А-380.

На крыльях смонтированы 22 квадратных метра солнечных батарей, энергии которых, по задумке авторов проекта, хватит для круглосуточного электроснабжения машины.

Сравнительно небольшой вес аппарата обеспечивает конструкция из углеродного волокна. Значительную часть самолета покрывают около 17 тысяч фотоэлементов, которые в связке с литий-ионными батареями обеспечивают работу двигателей аппарата. Скорость, которую может развивать самолет, равна 140 километрам в час.

В Китае построена электростанция в форме улыбающейся панды

15 / 08 / 2017

Согласно сообщению корпорации по возобновляемым источникам энергии Panda Green Energy, 29 июня в городе Датун провинции Шаньси было завершено строительство и подключение к сети первой в мире солнечной электростанции в виде панд.  10 августа эта солнечная электростанция официально начала свою работу.
Электростанция расположена в провинции Шаньси на севере Китая, её мощность составляет 50МВт. Предполагается, что когда проект Panda Green Energy будет завершён, мощность увеличится до 100МВТ.

Идея о создании электростанции в виде панд принадлежит 17-летнему китайскому старшекласснику, который учился в США. Он спроектировал электростанцию по выработке солнечной энергии в виде национального сокровища Китая – большой панды. При строительстве использовались солнечные панели двух цветов с белыми фотоэлектрическими клетками и черными кремниевыми фотоэлементами. Если смотреть сверху, то части панды чёрного цвета, к примеру, лапы и уши, состоят из монокристаллических силиконовых солнечных ячеек, а белые части — из тонкопленочных солнечных ячеек.  Таким образом, удалось максимально точно воссоздать вид бамбуковых медведей.  В общей сложности использовано 69888 монокристаллических кремниевых элементов мощностью 295 ватт, 94248 двухсторонних стеклянных компонентов с пиковой мощностью в 310, 11200 мембранных модулей из теллурида кадмия мощностью 115 ватт. Внешний вид первого этапа электростанции выполнен в виде двух детенышей панд. Второй блок будет представлять собой двух больших бамбуковых медведей, вместе они образуют счастливую семью.

При при электростанции будет создан центр для обучения молодежи. Школьникам расскажут о преимуществах солнечной энергии. Например, за 25 лет эксплуатации станция выработает столько же энергии, сколько высвободилось бы при сжигании 1056 миллионов тонн угля, объемы выбросов углекислого газа будут снижены на 2.74 млн. тонн, масштабы эмиссии сернистого газа, оксинитридных элементов и пыли на 26 тыс. тонн, 24 тонны и 1600 тонн соответственно.

Проект реализуется в сотрудничестве с программой развития ООН с целью пропаганды развития солнечной энергетики .

В ближайшие пяти лет в рамках программы экономического развития в Китае должны появиться еще несколько аналогичных станций. Поскольку программа нацелена на сотрудничество между евразийскими странами, некоторые из панда-станций могут быть построены и за пределами страны.

 

 

В Китае построена электростанция в форме улыбающейся панды

15 / 08 / 2017

Согласно сообщению корпорации по возобновляемым источникам энергии Panda Green Energy, 29 июня в городе Датун провинции Шаньси было завершено строительство и подключение к сети первой в мире солнечной электростанции в виде панд.  10 августа эта солнечная электростанция официально начала свою работу.
Электростанция расположена в провинции Шаньси на севере Китая, её мощность составляет 50МВт. Предполагается, что когда проект Panda Green Energy будет завершён, мощность увеличится до 100МВТ.

Идея о создании электростанции в виде панд принадлежит 17-летнему китайскому старшекласснику, который учился в США. Он спроектировал электростанцию по выработке солнечной энергии в виде национального сокровища Китая – большой панды. При строительстве использовались солнечные панели двух цветов с белыми фотоэлектрическими клетками и черными кремниевыми фотоэлементами. Если смотреть сверху, то части панды чёрного цвета, к примеру, лапы и уши, состоят из монокристаллических силиконовых солнечных ячеек, а белые части — из тонкопленочных солнечных ячеек.  Таким образом, удалось максимально точно воссоздать вид бамбуковых медведей.  В общей сложности использовано 69888 монокристаллических кремниевых элементов мощностью 295 ватт, 94248 двухсторонних стеклянных компонентов с пиковой мощностью в 310, 11200 мембранных модулей из теллурида кадмия мощностью 115 ватт. Внешний вид первого этапа электростанции выполнен в виде двух детенышей панд. Второй блок будет представлять собой двух больших бамбуковых медведей, вместе они образуют счастливую семью.

При при электростанции будет создан центр для обучения молодежи. Школьникам расскажут о преимуществах солнечной энергии. Например, за 25 лет эксплуатации станция выработает столько же энергии, сколько высвободилось бы при сжигании 1056 миллионов тонн угля, объемы выбросов углекислого газа будут снижены на 2.74 млн. тонн, масштабы эмиссии сернистого газа, оксинитридных элементов и пыли на 26 тыс. тонн, 24 тонны и 1600 тонн соответственно.

Проект реализуется в сотрудничестве с программой развития ООН с целью пропаганды развития солнечной энергетики .

В ближайшие пяти лет в рамках программы экономического развития в Китае должны появиться еще несколько аналогичных станций. Поскольку программа нацелена на сотрудничество между евразийскими странами, некоторые из панда-станций могут быть построены и за пределами страны.

 

 

Новые разработки в сфере материалов для производства солнечных батарей

9 / 08 / 2017



Уже в ближайшие десятилетия солнечные батареи координально изменят энергетический баланс в мире.
Прогнозы аналитиков Bloomberg New Energy Finance говорят о том, что к 2040 году свыше 20% всего электричества таких стран, как Австралия или Бразилия будет генерироваться с помощью солнечных батарей. При этом стремительное развитие фотовольтаики может столкнуться с проблемой исходного материала: кремниевые ячейки, которые сегодня используются в большинстве панелей, имеют несколько серьезных ограничений.

Однако научный мир уже готовит замену: перовскитные элементы. Их использование вместо кремния позволит не только решить ключевые проблемы кремниевых аналогов, но и существенно повысить эффективность и географию использования солнечных панелей.

Перовскитом называют редкий для поверхности Земли минерал, титанат кальция, а перовскитами — различные материалы с кристаллической решеткой, схожей с решеткой перовскита. В 2009 году было показано, что перовскиты могут эффективно преобразовывать энергию видимого света в электричество, и с тех пор они считаются одними из самых перспективных кандидатов для создания солнечной энергетики. Так, авторитетный научный журнал Science в 2013 году включил солнечные батареи на основе перовскитов в десятку главных научных прорывов года.

Подробнее на ТАСС:
http://tass.ru/nauka/3991182

Три проблемы кремния

Главное ограничение кремниевых ячеек состоит в том, что они производятся из материала, который редко встречается в природе (по крайней мере в том чистом виде, который нужен производителям панелей). Для очистки материала необходимо расплавить диоксид кремния при температуре от 1500 до 2000 градусов по Цельсию, что приводит к огромным затратам на электричество и, как следствие, выбросам углекислого газа при генерации. Это само по себе снижает экологичность кремниевых панелей

Перовскиты же сегодня успешно синтезируются в лабораториях благодаря комбинации химических элементов, которая наносится на легкую пленку. Так специалисты из Московского государственного университета проводят успешные исследования по нанесению перовскита на изогнутые поверхности и их интеграцию в строительные материалы любой формы и размера.

Эта особенность перовскитных ячеек позволяет решить вторую важную проблему кремниевых панелей – жесткость и вес. Для оптимальной работы кремниевые ячейки должны быть плоскими и располагаться на больших и тяжелых «классических» панелях.

Наконец, третье ограничение – проблема роста: КПД кремниевых ячеек уже 15 лет как находится на уровне 18–20%. С момента создания первого перовскитного образца, в 2009 году, КПД инновационного материала увеличен в 5 раз – с 4 до 22%, и специалисты видят потенциал в росте до 30% и выше.

Снижение стоимости электричества — существенное, но не единственное преимущество инновационного материала. Неравномерная структура кристаллов позволяет воспринимать не только прямой, но и рассеянный свет, сохраняя эффективность значительно выше кремниевых аналогов. Это позволяет расширить географию потенциального использования солнечных батарей.

Ученым еще предстоит ответить на ряд вопросов прежде чем перейти к промышленному производству, но значительный потенциал технологии уже сегодня заметили ее будущие потребители – энергетические компании. Так, крупнейшая частная энергокомпания России «ЕвроСибЭнерго» выступает индустриальным партнером исследований перовскитных ячеек в МГУ. Компания не только финансирует закупку оборудования, но и предоставляет для проведения полевых тестов ячеек мощности своей действующей Абаканской солнечной электростанции. Генеральный директор «ЕвроСибЭнерго» Вячеслав Соломин надеется, что промышленное использование перовскитов начнется уже в ближайшие годы. В случае успешного тестирования прототипа с заявленными характеристиками будет рассматриваться вопрос о дальнейшей коммерциализации образца и старте массового производства. В таком случае можно будет ставить задачу в предоставлении доступа к солнечной энергетике регионам, удаленным от генерации. В настоящее время по всему миру около 1,2 млрд человек лишены надежного источника электричества.

В США ученые создали солнечные фотоэлементы с ближним ИК-диапазоном

6 / 07 / 2017

Исследователям Мичиганского университета удалось решить многолетнюю проблему солнечной энергетики — поглощение фотонов, близких к инфракрасному (ИК) диапазону.

Это открытие сможет увеличить продуктивность устройства концентраторной фотоэлектроники и позволит создать малогабаритные и высокоэффективные солнечные батареи, работающие с концентрированным солнечным излучением.

Сегодня фотоэлементы для солнечных панелей, как правило, состоят из нанесенных друг на друга методом молекулярно-лучевой эпитаксии трех слоев полупроводников, которые поглощают излучение в различных участках солнечного спектра.

Свет, пропускаемый первым слоем, поглощается вторым или третьим, однако фотоны (ИК) диапазона проходят такой элемент насквозь, не внося никакого вклада в генерируемое электричество.

Материаловеды Мичиганского университета придумали сплав с недостающим «четвёртым» слоем. Он структурно совместим с полупроводниками на базе арсенида галлия, широко применяемыми в концентраторной фотоэлектронике, к тому же он дешевле на 25%, чем самые экономичные предыдущие варианты.

Авторам удалось создать более эффективное соединение слегка модифицированного мышьяка с висмутом, путем комбинирования методов рентгеновской дифракции и ионно-лучевого анализа с компьютерным моделированием. Изменение количества азота и висмута в исходной смеси позволило исключить один этап из процесса синтеза, а оптимальный температурный режим обеспечил равномерное смешивание компонентов и надежную связь с подложкой.

Кстати, ранее этот же коллектив разработал упрощенный процесс легирования полупроводников, который позволяет отказаться от добавления токсичного и дорогостоящего бериллия и снизить себестоимость изготовления концентраторных фотоэлементов для солнечных панелей на 30%.